ON THE ALGEBRAIC EQUATIONS IN IMPLICIT RUNGE-KUTTA METHODS*

W. H. HUNDSDORFER† AND M. N. SPIJKER‡

Abstract. This paper is concerned with the system of (nonlinear) algebraic equations which arise in the application of implicit Runge-Kutta methods to stiff initial value problems. Without making the classical assumption that the stepsize h > 0 is small, we derive transparent conditions on the method that guarantee existence and uniqueness of solutions to the equations. Besides, we discuss the sensitivity of the Runge-Kutta procedure with respect to perturbations in the algebraic equations.

Key words. numerical analysis, stiff initial value problems, implicit Runge-Kutta methods, nonlinear algebraic equations, stability

AMS(MOS) subject classifications. Primary 65L05; secondary 47H15, 65H10

1. Introduction. We shall deal with the numerical solution of the system of n ordinary differential equations

(1.1)
$$\frac{d}{dt}U(t) = f(t, U(t)) \qquad (t \ge t_0),$$

under an initial condition $U(t_0) = u_0$. Here $t_0 \in \mathbb{R}$, $u_0 \in \mathbb{K}^n$ and $f: \mathbb{R} \times \mathbb{K}^n \to \mathbb{K}^n$ is a given continuous function. To cope simultaneously with real and with complex differential equations, the set \mathbb{K} will stand consistently for either \mathbb{R} or \mathbb{C} . Further, $\langle \cdot, \cdot \rangle$ is an arbitrary inner product on \mathbb{K}^n , and $|\xi| = \langle \xi, \xi \rangle^{1/2}$ (for $\xi \in \mathbb{K}^n$).

In order to introduce the problem treated in this article we assume

(1.2) Re
$$\langle f(t, \tilde{\xi}) - f(t, \xi), \tilde{\xi} - \xi \rangle \leq 0$$
 (for all $t \in \mathbb{R}$ and $\tilde{\xi}, \xi \in \mathbb{K}^n$).

This condition implies (cf. e.g. [9]) that for any two solutions U, \tilde{U} to (1.1) the norm $|\tilde{U}(t)-U(t)|$ does not increase when t increases.

Let h>0 denote a stepsize and $t_k=t_{k-1}+h$ $(k=1,2,3,\cdots)$. Using an implicit Runge-Kutta method, approximations u_k to $U(t_k)$ are computed (for $k \ge 1$) by

(1.3a)
$$u_k = u_{k-1} + h \sum_{i=1}^m b_i f(t_{k-1} + c_i h, y_i),$$

(1.3b)
$$y_i = u_{k-1} + h \sum_{j=1}^m a_{ij} f(t_{k-1} + c_j h, y_j) \qquad (1 \le i \le m).$$

Here $m \ge 1$ and a_{ij} , b_j are real parameters, $c_i = a_{i1} + a_{i2} + \cdots + a_{im}$. We define the $m \times m$ matrices $A = (a_{ij})$, $B = \text{diag}(b_1, b_2, \cdots, b_m)$ and the vector $b = (b_1, b_2, \cdots, b_m)^T \in \mathbb{R}^m$.

During these last years algebraically stable Runge-Kutta methods have gained much interest. These methods can be characterized by the property that B is positive

^{*} Received by the editors December 3, 1984; accepted for publication (in revised form) October 14, 1985.

[†] Centre for Mathematic and Computer Science, Amsterdam, the Netherlands.

[‡] Institute of Applied Mathematics and Computer Science, University of Leiden, Wassenaarseweg 80, Leiden, the Netherlands.

definite while $(BA + A^TB - bb^T)$ is positive semidefinite. In [1], [4] this property was shown to imply the important *contractivity* relation

$$|\tilde{u}_k - u_k| \le |\tilde{u}_{k-1} - u_{k-1}| \qquad (k \ge 1),$$

for any two sequences $\{u_k\}$, $\{\tilde{u}_k\}$ computed from (1.3) with the same arbitrary stepsize h > 0. However, algebraic stability does not guarantee that the system of algebraic equations (1.3b) has a solution for arbitrary h > 0 (see [5]).

It was proved by Crouzeix (cf. [6], [5], [10]) that, whenever (1.2) is fulfilled and

(1.4) there is a positive definite diagonal matrix D such that $DA + A^{T}D$ is positive definite,

then the system (1.3b) does have a unique solution (for arbitrary h > 0). Some well-known algebraically stable methods satisfy (1.4) (the Gauss methods, the Radau IA and IIA methods, the 2-stage Lobatto IIIC method—see [13]). But, e.g., the 3-stage Lobatto IIIC method is known to violate (1.4) (see [13], [10], [11], [12]).

The theory in the present paper provides a simple condition on A which is less restrictive than (1.4) and which still implies the existence of a unique solution to (1.3b) (for arbitrary h>0). The 3-stage Lobatto IIIC method fulfills this new condition.

In [2], [8], [3] contractivity (and stability) relations were derived under assumptions on f that are more general than assumption (1.2). Our main theorem on the existence of solutions to (1.3b) will also cope with f satisfying such generalized assumptions.

An important tool in obtaining our existence and unicity results consists in a study of the sensitivity of the solution of the algebraic equations with respect to (so-called internal) perturbations. As a by-product we thus shall obtain generalizations of results on this sensitivity already given in [13], [10], [12].

In § 2 we shall state and discuss our main result (Theorem 2.1) on the existence and uniqueness of solutions to (1.3b). In § 3 we derive the material that is basic for the proof of Theorem 2.1. We also apply this material in a study of the sensitivity of u_k (see (1.3)) with respect to internal perturbations. The final § 4 contains the proof of Theorem 2.1.

Remark 1.1. The Runge-Kutta step (1.3) is often written in the form

(1.5a)
$$u_k = u_{k-1} + \sum_{i=1}^m b_i x_i,$$

(1.5b)
$$x_i = hf\left(t_{k-1} + c_i h, u_{k-1} + \sum_{i=1}^m a_{ij} x_j\right) \qquad (i \le i \le m).$$

Our results on the existence of solutions to (1.3b) are also relevant to (1.5b), since (1.5b) has a unique solution iff (1.3b) has such a solution (see Lemma 4.1).

Remark 1.2. The results of this paper are also applicable to general linear methods (cf. [2]). The systems of algebraic equations arising in such methods are essentially of type (1.3b) (or (1.5b)).

2. Existence and uniqueness.

2.1. Formulation of the main theorem. Let α , β be given real constants. We consider the following three conditions on f, A and h.

(2.1) The function
$$f: \mathbb{R} \times \mathbb{K}^n \to \mathbb{K}^n$$
 is continuous, and $\operatorname{Re} \langle f(t, \tilde{\xi}) - f(t, \xi), \tilde{\xi} - \xi \rangle \leq \alpha |f(t, \tilde{\xi}) - f(t, \xi)|^2 + \beta |\tilde{\xi} - \xi|^2$ (for all $t \in \mathbb{R}$ and $\xi, \tilde{\xi} \in \mathbb{K}^n$).

(2.2) There are real diagonal matrices $D = \text{diag}(\delta_1, \delta_2, \dots, \delta_m)$,

 $S = \text{diag } (\sigma_1, \sigma_2, \dots, \sigma_m) \text{ and } T = \text{diag } (\tau_1, \tau_2, \dots, \tau_m) \text{ such that the matrix } DA + A^TD - S - A^TTA \text{ is positive semidefinite}$

(2.3) \mathcal{M}_1 and \mathcal{M}_2 are disjoint index sets with $\mathcal{M}_1 \cup \mathcal{M}_2 = \{1, 2, \dots, m\}$; $\delta_i \ge 0$, $\sigma_i - 2h^{-1}\alpha\delta_i \ge 0$, $\tau_i - 2h\beta\delta_i \ge 0$ (if $1 \le i \le m$); $\sigma_i - 2h^{-1}\alpha\delta_i > 0$ if either $i \in \mathcal{M}_1$ or $(i \in \mathcal{M}_2 \text{ and } \alpha\delta_i \ne 0)$; $\tau_i - 2h\beta\delta_i > 0$ if either $i \in \mathcal{M}_2$ or $(i \in \mathcal{M}_1 \text{ and } \beta\delta_i \ne 0)$.

THEOREM 2.1. Assume (2.1), (2.2), (2.3). Then the system (1.3b) has a unique solution $y_1, y_2, \dots, y_m \in \mathbb{K}^n$.

We note that the index sets occurring in condition (2.3) are allowed to be empty. Condition (2.1) on f is a generalization of the well-known one-sided Lipschitz condition (where $\alpha = 0$, see e.g. [1], [7], [13]) and of the circle condition in [9] (where $\beta = 0$). It was also used in [17], [8].

If $\alpha \ge 0$, then there exist functions f satisfying (2.1) with arbitrarily large Lipschitz constants. It follows that initial value problems (1.1) are covered that can be arbitrarily stiff.

We conclude this section with a lemma which gives some more insight into condition (2.1) and which simplifies the application of the main Theorem 2.1. For given $\alpha, \beta \in \mathbb{R}$ we denote the class of functions f satisfying (2.1) by $\mathcal{F}(\alpha, \beta)$.

LEMMA 2.2. Let $\alpha, \beta \in \mathbb{R}$.

- (a) Suppose $\beta_1 \in \mathbb{R}$, $\beta_1 > \beta$ and $\alpha \neq 0$. Then there exists a number $\alpha_1 < \alpha$ such that $\mathcal{F}(\alpha, \beta) \subset \mathcal{F}(\alpha_1, \beta_1)$.
- (b) Suppose $\alpha_1 \in \mathbb{R}$, $\alpha_1 > \alpha$ and $\beta \neq 0$. Then there exists a number $\beta_1 < \beta$ such that $\mathcal{F}(\alpha, \beta) \subset \mathcal{F}(\alpha_1, \beta_1)$.

Proof. We shall only prove part (a) of this lemma. A proof of part (b) can be given along the same lines. Suppose first $\alpha < 0$ and $\beta_1 > \beta$. Let $f \in \mathcal{F}(\alpha, \beta)$, and let $t \in \mathbb{R}$, $\tilde{\xi}, \xi \in \mathbb{K}^n$ be arbitrary. Put $\nu = \tilde{\xi} - \xi$, $w = f(t, \tilde{\xi}) - f(t, \xi)$. We have

Re
$$\langle v, w \rangle \leq \alpha |w|^2 + \beta |v|^2$$
.

Using the Schwarz inequality it follows that

$$\alpha |w|^2 + \beta |v|^2 + |w||v| \ge 0.$$

Hence there is a $\gamma_0 > 0$ (only depending on α and β) such that

$$|w|^2 \leq \gamma_0 |v|^2$$
.

Take $\alpha_1 < \alpha$ such that $(\beta_1 - \beta)/(\alpha - \alpha_1) \ge \gamma_0$. We then have

$$\alpha |w|^2 + \beta |v|^2 \le \alpha_1 |w|^2 + \beta_1 |v|^2$$

from which it is easily seen that $f \in \mathcal{F}(\alpha_1, \beta_1)$.

We now consider the case where $\alpha > 0$, $\beta_1 > \beta$. For any $\alpha_1 \in (\frac{1}{2}\alpha, \alpha)$ and $v, w \in \mathbb{K}^n$ satisfying

Re
$$\langle v, w \rangle > \alpha_1 |w|^2 + \beta_1 |v|^2$$
,

we have

$$|v||w| > \frac{1}{2}\alpha |w|^2 + \beta_1 |v|^2$$
.

It follows that there is a constant $\gamma_1 > 0$ (only depending on α and β_1) such that

$$|w|^2 \leq \gamma_1 |v|^2$$
.

Take $\alpha_1 \in (\frac{1}{2}\alpha, \alpha)$ such that $(\beta_1 - \beta)/(\alpha - \alpha_1) \ge \gamma_1$. Assume $f \in \mathcal{F}(\alpha, \beta)$ but $f \notin \mathcal{F}(\alpha_1, \beta_1)$. Then we know there are $t \in \mathbb{R}$ and $\tilde{\xi}, \xi \in \mathbb{K}^n$ such that

$$\alpha_1 |w|^2 + \beta_1 |v|^2 < \text{Re} \langle v, w \rangle \le \alpha |w|^2 + \beta |v|^2$$

and

$$|w|^2 \leq \lceil (\beta_1 - \beta)/(\alpha - \alpha_1) \rceil |v|^2$$

with $v = \tilde{\xi} - \xi$, $w = f(t, \tilde{\xi}) - f(t, \xi)$. This yields a contradiction. \square

2.2. Application of the main theorem. From Theorem 2.1 one easily obtains COROLLARY 2.3. Assume $f: \mathbb{R} \times \mathbb{K}^n \to \mathbb{K}^n$ is continuous and satisfies (1.2). Suppose (2.2) holds with

$$\delta_i \ge 0$$
, $\sigma_i \ge 0$, $\tau_i \ge 0$, $\sigma_i + \tau_i > 0$ (for $1 \le i \le m$).

Then (1.3b) has a unique solution.

When $\tau_i = 0$ $(1 \le i \le m)$, the corollary is proved by applying Theorem 2.1 with $\mathcal{M}_1 = \{1, 2, \dots, m\}$, $\mathcal{M}_2 = \emptyset$, and when $\sigma_i = 0$ $(1 \le i \le m)$ it is proved with $\mathcal{M}_1 = \emptyset$, $\mathcal{M}_2 = \{1, 2, \dots, m\}$. In the general case one can choose $\mathcal{M}_1 = \{i \mid \sigma_i > 0\}$, $\mathcal{M}_2 = \{i \mid \sigma_i = 0\}$ and $\tau_i > 0$.

The above corollary is a generalization of [6, Thm. 5.4], [5, Thm. 1] and [10, Lem. 4.2], where (1.4) was required. Condition (1.4) implies that the assumption on (2.2) in the corollary is fulfilled (with $\tau_i = 0$). On the other hand, (2.2) can be fulfilled with $\delta_i \ge 0$, $\sigma_i \ge 0$, $\tau_i \ge 0$, $\sigma_i + \tau_i > 0$ while (1.4) is violated. An example of this situation is provided by the 3-stage Lobatto IIIC method referred to in the Introduction (see also § 2.3).

COROLLARY 2.4. Let h>0 and $\alpha, \beta \in \mathbb{R}$ be given. Suppose $\kappa, \lambda \in \mathbb{R}$ and D= diag $(\delta_1, \delta_2, \dots, \delta_m)$ are such that the matrix

$$DA + A^TD - \kappa D - \lambda A^TDA$$

is positive semidefinite. Assume further $\delta_i > 0$ $(1 \le i \le m)$, $2\alpha h^{-1} \le \kappa$, $2\beta h \le \lambda$ and $2\alpha h^{-1} + 2\beta h < \kappa + \lambda$. Then (1.3b) has a unique solution whenever f satisfies (2.1).

Proof. For the cases $[2\alpha h^{-1} \le \kappa, 2\beta h < \lambda, \alpha \ne 0]$ and $[2\alpha h^{-1} < \kappa, 2\beta h \le \lambda, \beta \ne 0]$ the proof easily follows by combining Theorem 2.1 and Lemma 2.2. If $[2\alpha h^{-1} \le \kappa, 2\beta h < \lambda, \alpha = 0]$, Theorem 2.1 can be applied directly with $\mathcal{M}_1 = \emptyset$, and if $[2\alpha h^{-1} < \kappa, 2\beta h \le \lambda, \beta = 0]$, we take $\mathcal{M}_2 = \emptyset$ in Theorem 2.1. \square

We note that if $\alpha = \kappa = 0$, the content of the above corollary reduces to a theorem formulated in [15, Thm. 4.3.1]. The latter theorem in its turn generalizes results on the system (1.3b) formulated in [12, Thms. 5.3.9, 5.3.12].

2.3. Examples.

Example 2.5. The algebraically stable, 3-stage Lobatto IIIC method is given by

$$A = \begin{pmatrix} 1/6 & -1/3 & 1/6 \\ 1/6 & 5/12 & -1/12 \\ 1/6 & 2/3 & 1/6 \end{pmatrix}, \qquad b = \begin{pmatrix} 1/6 \\ 2/3 \\ 1/6 \end{pmatrix}.$$

Condition (1.4) is not fulfilled (see e.g. [13]). However, with the choice $\delta_1 = 1$, $\delta_2 = 4$, $\delta_3 = 1$, $\tau_1 = 2$, $\sigma_2 = 2$, $\tau_3 = 2$ and the other τ_i , σ_i equal to zero, condition (2.2) is fulfilled. From Corollary 2.3 we thus see that (1.3b) always has a unique solution when f is continuous and satisfies (1.2).

We note that this Runge-Kutta method does not satisfy (2.2) with any $\delta_i \ge 0$, $\sigma_i > 0$, $\tau_i = 0$ ($1 \le i \le m$) or with $\delta_i \ge 0$, $\sigma_i = 0$, $\tau_i > 0$ ($1 \le i \le m$).

Example 2.6. Consider an arbitrary method that is algebraically stable. Applying Corollary 2.4 with $\kappa = \lambda = 0$, it follows that (1.3b) has a unique solution whenever f satisfies (2.1) with some $\alpha \le 0$, $\beta \le 0$, $\alpha + \beta < 0$ (which is a bit stronger than (1.2)). This result provides an extension of [6, Remark 5.7], [5, Cor. and Remark 3, p. 90].

Example 2.7. Consider a method satisfying (1.4). From Corollary 2.4 it can be seen that there exist κ_0 , $\lambda_0 > 0$ such that (1.3b) has a unique solution for any h > 0 and f satisfying (2.1) with $\alpha h^{-1} \le \kappa_0$ and $\beta h \le \lambda_0$. This generalizes a related result on the system (1.3b) formulated in [12, Thms. 5.3.9, 5.3.12] where $\alpha = 0$ is assumed.

3. Stability with respect to internal perturbations.

3.1. Notation. For given column vectors $x_1, x_2, \dots, x_m \in \mathbb{K}^n$ we denote the column vector $(x_1^T, x_2^T, \dots, x_m^T)^T \in \mathbb{K}^{nm}$ by $[x_i]$. On the space \mathbb{K}^{nm} we deal with the norm

$$||x|| = (|x_1|^2 + |x_2|^2 + \cdots + |x_m|^2)^{1/2}$$

for $x = [x_i] \in \mathbb{K}^{nm}$, where $|\cdot|$ denotes the norm of § 1. For any linear mapping L from \mathbb{K}^{nm} into \mathbb{K}^{nm} we define $||L|| = \sup \{||Lx||: x \in \mathbb{K}^{nm} \text{ with } ||x|| = 1\}$.

 \mathcal{M}_1 and \mathcal{M}_2 are disjoint sets with $\mathcal{M}_1 \cup \mathcal{M}_2 = \{1, 2, \cdots, m\}$, and the projections $I_j : \mathbb{K}^{nm} \to \mathbb{K}^{nm}$ (for j = 1, 2) are defined by $I_j x = y$ for $x = [x_i]$ with $y = [y_i]$ given by

$$y_i = x_i$$
 (when $i \in \mathcal{M}_j$), $y_i = 0$ (when $i \notin \mathcal{M}_j$).

Let $u_{k-1} \in \mathbb{K}^n$, h > 0 and t_{k-1} be given. We define the functions $f_i : \mathbb{K}^n \to \mathbb{K}^n$ $(1 \le i \le m)$ and $F : \mathbb{K}^{nm} \to \mathbb{K}^{nm}$ by

$$f_i(\xi) = hf(t_{k-1} + c_i h, u_{k-1} + \xi) \quad (\text{for } \xi \in \mathbb{K}^n),$$

$$Fx = [f_i(x_i)] \quad (\text{for } x = [x_i] \in \mathbb{K}^{nm}).$$

Further we define $H: \mathbb{K}^{nm} \to \mathbb{K}^{nm}$ by $Hz = [h_i(z)]$ (for $z = [z_i] \in \mathbb{K}^{nm}$) with

$$h_i(z) = z_i - \sum_{j \in \mathcal{M}_1} a_{ij} f_j(z_j) - \sum_{j \in \mathcal{M}_2} a_{ij} z_j \quad \text{(if } i \in \mathcal{M}_1\text{)},$$

$$h_i(z) = z_i - f_i \left(\sum_{j \in \mathcal{M}_1} a_{ij} f_j(z_j) + \sum_{j \in \mathcal{M}_2} a_{ij} z_j \right) \quad (\text{if } i \in \mathcal{M}_2).$$

The $n \times n$ identity matrix is denoted by $I^{(n)}$ and the Kronecker product by \otimes . We define

$$\mathbf{b} = b \otimes I^{(n)}, \quad \mathbf{A} = A \otimes I^{(n)}, \quad \mathbf{a}_i = a_i \otimes I^{(n)}.$$

Here b, A are as in § 1, and a_i^T denotes the *i*th row of the matrix A (for $1 \le i \le m$). We define the mappings (from \mathbb{K}^{nm} to \mathbb{K}^{nm})

$$F_i = I_i F$$
, $H_i = I_i H$, $A_j = I_j A$ (for $j = 1, 2$).

Remark that, with $I = I_1 + I_2$ denoting the $nm \times nm$ identity mapping, we have

(3.1)
$$H = I - (I_1 + F_2) \mathbf{A} (F_1 + I_2).$$

3.2. Runge-Kutta methods with internal perturbations. The main purpose of this subsection is a discussion of the following four equalities and of their relations to the Runge-Kutta method (1.3).

$$(3.2) y - \mathbf{A}Fy = p,$$

$$(3.3) x - F\mathbf{A}x = q,$$

$$(3.4) Hz = r,$$

$$(3.5) y - \mathbf{A}x = s, x - Fy = t.$$

LEMMA 3.1.

(a) (3.2) implies (3.4) with

$$z = (I_1 + F_2)y$$
, $r = I_1 p + (F_2 y - F_2 (y - p))$;

(3.4) implies (3.2) with

$$y = [I_1 + A_2(F_1 + I_2)]z,$$
 $p = (I_1 + A_2)r.$

(b) (3.3) implies (3.4) with

$$z = (A_1 + I_2)x$$
, $r = (A_1I_1 + I_2)q + (F_2Ax - F_2A(x - I_1q))$;

(3.4) implies (3.3) with

$$x = (F_1 + I_2)z$$
, $q = (F_1 z - F_1(z - r)) + I_2 r$.

(c) (3.5) implies (3.4) with

$$z = I_1 y + I_2 x$$
, $r = I_1 s + (A_1 I_1 + I_2) t + (F_2 y - F_2 (y - s - A I_1 t))$;

(3.4) implies (3.5) with

$$x = (F_1 + I_2)z$$
, $y = I_1z + A_2x$, $s = I_1r$, $t = I_2r$.

Using (3.1) the proof of this lemma is straightforward, and we omit it. With the notation of § 3.1 we can rewrite the Runge-Kutta step (1.3) as

$$(3.6) u_k = u_{k-1} + \mathbf{b}^T F y, y - \mathbf{A} F y = 0,$$

and (1.5) can be written in the form

$$(3.7) u_k = u_{k-1} + \mathbf{b}^T x, x - F \mathbf{A} x = 0.$$

Applying Lemma 3.1 (with p = q = r = 0), we see that both (3.6) and (3.7) are equivalent to the following formulation of the Runge-Kutta method,

(3.8)
$$u_k = u_{k-1} + \mathbf{b}^T (F_1 + I_2) z, \qquad Hz = 0.$$

If any numerical procedure is applied to solve the equation Hz = 0, we obtain, in general, only an approximation, say \tilde{z} , to the true z. Denoting the corresponding numerical approximation to u_k by \tilde{u}_k we thus have

(3.9a)
$$\tilde{\mathbf{u}}_k = \mathbf{u}_{k-1} + \mathbf{b}^T (F_1 + I_2) \tilde{\mathbf{z}},$$

with a residual vector $r \in \mathbb{K}^{nm}$, $r \approx 0$. We note that the relations (3.9) with $(\mathcal{M}_1 = \{1, 2, \dots, m\})$ and a different interpretation of the vector r also occur in the interesting investigations of B-consistency by Frank, Schneid and Ueberhuber (cf. [13], [14]). We call the components $r_i \in \mathbb{K}^n$ of $r = [r_i] \in \mathbb{K}^{nm}$ internal perturbations in the Runge-Kutta step (3.8).

A question of great practical and theoretical importance is whether $\|\tilde{z}-z\|$ and $|\tilde{u}_k-u_k|$ are small (uniformly for all f satisfying (2.1)) whenever $\|r\|$ is small (cf. (3.8), (3.9)). The results of § 3.3 are relevant to this question for $\|\tilde{z}-z\|$, and those of § 3.4 for $|\tilde{u}_k-u_k|$.

In practice one usually computes u_k from (3.6) or from (3.7). These cases are covered by our considerations since (3.8), (3.9) reduce to (3.6), (3.16) when $\mathcal{M}_1 = \{1, 2, \dots, m\}$, while (3.8), (3.9) reduce to (3.7), (3.17) when $\mathcal{M}_2 = \{1, 2, \dots, m\}$.

3.3. Internal stability. We shall investigate, for arbitrary $z, \tilde{z} \in \mathbb{K}^{nm}$, the sensitivity of $\tilde{z} - z$ with respect to $H\tilde{z} - Hz$, where the latter difference can be interpreted as the difference between two (different) internal perturbations (cf. (3.9b)). The results we obtain are basic for the proof in § 4 of Theorem 2.1.

Let z, \tilde{z} be arbitrary vectors in \mathbb{K}^{nm} . In view of Lemma 3.1(c) we define

(3.10)
$$x = (F_1 + I_2)z, \qquad y = I_1z + \mathbf{A}_2x,$$
$$\tilde{x} = (F_1 + I_2)\tilde{z}, \qquad \tilde{y} = I_1\tilde{z} + \mathbf{A}_2\tilde{x}.$$

LEMMA 3.2. Assume (2.1), (2.2), (2.3). Then there is a constant γ_0 (only depending on D, S, T, $h^{-1}\alpha$, $h\beta$) such that

$$||I_1(\tilde{x}-x)|| + ||I_2(\tilde{y}-y)|| \le \gamma_0 ||H\tilde{z}-Hz||$$

whenever $z, \tilde{z} \in \mathbb{K}^{nm}$ and $x, \tilde{x}, y, \tilde{y}$ are defined by (3.10).

Proof. We define $u = [u_i], v = [v_i], w = [w_i], p = [p_i], q = [q_i] \in \mathbb{K}^{nm}$ by

$$u = \tilde{x} - x$$
, $v = \tilde{y} - y$, $w = F\tilde{y} - Fy$,
 $p = I_1(H\tilde{z} - Hz)$, $q = I_2(H\tilde{z} - Hz)$.

By the last part of Lemma 3.1 we thus have

$$(3.11) v - \mathbf{A}u = p, u - w = q$$

From (2.1) it follows that

$$\operatorname{Re}\langle v_i, w_i \rangle \leq \bar{\alpha} |w_i|^2 + \bar{\beta} |v_i|^2$$

where $\bar{\alpha} = h^{-1}\alpha$, $\bar{\beta} = h\beta$. Substituting $v_i = \mathbf{a}_i^T u + p_i$, $w_i = u_i - q_i$ (cf. (3.11)) in this inequality and using $\langle p_i, q_i \rangle = 0$, we obtain

$$\operatorname{Re} \langle \mathbf{a}_{i}^{T} \mathbf{u}, u_{i} \rangle - \bar{\alpha} |u_{i}|^{2} - \bar{\beta} |\mathbf{a}_{i}^{T} \mathbf{u}|^{2} \leq \operatorname{Re} \langle u_{i}, -p_{i} - 2\bar{\alpha}q_{i} \rangle + \operatorname{Re} \langle \mathbf{a}_{i}^{T} \mathbf{u}, q_{i} + 2\bar{\beta}p_{i} \rangle + \bar{\beta} |p_{i}|^{2} + \bar{\alpha} |q_{i}|^{2}.$$

From (2.2) and Lemma 2.2 in [7] it can be seen that

$$\sum_{i=1}^{m} 2\delta_i \operatorname{Re} \langle \mathbf{a}_i^T u, u_i \rangle \geqq \sum_{i=1}^{m} \sigma_i |u_i|^2 + \sum_{i=1}^{m} \tau_i |\mathbf{a}_i^T u|^2.$$

A combination of the last two inequalities yields

(3.12)
$$\sum_{i=1}^{m} \left(\frac{1}{2} \sigma_{i} - \bar{\alpha} \delta_{i} \right) |u_{i}|^{2} + \sum_{i=1}^{m} \left(\frac{1}{2} \tau_{i} - \bar{\beta} \delta_{i} \right) |\mathbf{a}_{i}^{T} u|^{2}$$

$$\leq \sum_{i=1}^{m} \delta_{i} \{ |u_{i}| \cdot |p_{i} + 2\bar{\alpha} q_{i}| + |\mathbf{a}_{i}^{T} u| \cdot |q_{i} + 2\bar{\beta} p_{i}| + \bar{\beta} |p_{i}|^{2} + \bar{\alpha} |q_{i}|^{2} \}.$$

Let ξ , η , λ , $\mu \in \mathbb{R}^m$ be column-vectors with components $\xi_i = (\frac{1}{2}\sigma_i - \bar{\alpha}\delta_i)^{1/2}|u_i|$, $\eta_i = (\frac{1}{2}\tau_i - \bar{\beta}\delta_i)^{1/2}|\mathbf{a}_i^T u|$, $\lambda_i = (\frac{1}{2}\sigma_i - \bar{\alpha}\delta_i)^{-1/2}\delta_i|p_i + 2\bar{\alpha}q_i|$, $\mu_i = (\frac{1}{2}\tau_i - \bar{\beta}\delta_i)^{-1/2}\delta_i|q_i + 2\bar{\beta}p_i|$ $(1 \le i \le m)$ (we use the convention $0^{-1/2} = 0$). Putting

$$\varepsilon = \sum_{i=1}^{m} \delta_{i} \{ \bar{\beta} | p_{i}|^{2} + \bar{\alpha} | q_{i}|^{2} \},$$

we see from (2.3) that (3.12) is equivalent to

$$\xi^T \xi + \eta^T \eta \leq \xi^T \lambda + \eta^T \mu + \varepsilon.$$

After an application of Schwarz's inequality a little calculation shows that

$$(\xi^T \xi + \eta^T \eta)^{1/2} \leq \frac{1}{2} (\lambda^T \lambda + \mu^T \mu)^{1/2} + \frac{1}{2} (\lambda^T \lambda + \mu^T \mu + 4\varepsilon)^{1/2}.$$

Hence

(3.13)
$$\sum_{i=1}^{m} (\sigma_{i} - 2\bar{\alpha}\delta_{i})|u_{i}|^{2} + \sum_{i=1}^{m} (\tau_{i} - 2\bar{\beta}\delta_{i})|\mathbf{a}_{i}^{T}u|^{2} \leq \gamma_{1} \sum_{i=1}^{m} |h_{i}(\tilde{z}) - h_{i}(z)|^{2}$$

with a constant γ_1 only depending on the parameters δ_i , σ_i , $\bar{\tau}_i$, $\bar{\alpha}$, $\bar{\beta}$.

The proof is completed by applying (2.3) and substituting $\mathbf{a}_i^T u = v_i$ (for $i \in \mathcal{M}_2$; see (3.11)) into (3.13). \square

Using the above lemma we shall prove the following theorem, which is the main result of this section.

THEOREM 3.3. Assume (2.1), (2.2), (2.3). Then there exists a function $\phi : \mathbb{K}^{nm} \times [0, \infty) \to [0, \infty)$ with the properties

- (i) $\phi(z;\cdot)$ is isotone on $[0,\infty)$ (for each $z \in \mathbb{K}^{nm}$),
- (ii) $\phi(z; \rho) \rightarrow \phi(z; 0) = 0$ (as $\rho \rightarrow 0+$; for each $z \in \mathbb{K}^{nm}$),
- (iii) $\|\tilde{z} z\| \le \phi(z; \|H\tilde{z} Hz\|)$ (for all $z, \tilde{z} \in \mathbb{K}^{nm}$).

Moreover, if $\mathcal{M}_2 = \emptyset$, then (i), (ii) and (iii) hold with $\phi(z, \rho) \equiv \gamma \rho$ where γ is a constant only depending on A, $h^{-1}\alpha$, $h\beta$ (and not on z, f or the dimension n).

Proof. Let $z, \tilde{z} \in \mathbb{K}^{nm}$ be given. Defining u, v, w, p, q as in the proof of Lemma 3.2, we have the representation

$$\tilde{z}-z=I_1v+I_2u$$
.

From (3.11) and Lemma 3.2 we obtain

$$||I_2u|| \le ||q|| + ||F_2\tilde{y} - F_2y|| \le ||q|| + \psi(z; \gamma_0||H\tilde{z} - Hz||)$$

where

(3.14)
$$\psi(z; \rho) = \sup \{ \|F_2(y+e) - F_2y\| \colon e \in \mathbb{K}^{nm} \text{ with } \|I_2e\| \le \rho \},$$
$$y = I_1z + \mathbf{A}_2(F_1 + I_2)z.$$

Using (3.11) and Lemma 3.2 once more, we thus obtain

$$||I_1v|| \le ||p|| + ||\mathbf{A}_1I_1|| \cdot ||I_1u|| + ||\mathbf{A}_1I_2|| \cdot ||I_2u||$$

$$\le ||p|| + ||\mathbf{A}_1I_1|| \cdot \gamma_0 \cdot ||H\tilde{z} - Hz|| + ||\mathbf{A}_1I_2|| \{ ||q|| + \psi(z; \gamma_0 ||H\tilde{z} - Hz||) \}.$$

It follows that property (iii) holds with

(3.15)
$$\phi(z; \rho) = (2 + \|\mathbf{A}_1 I_2\| + \gamma_0 \|\mathbf{A}_1 I_1\|) \rho + (1 + \|\mathbf{A}_1 I_2\|) \psi(z; \gamma_0 \rho).$$

The remaining properties stated in the theorem follow from the continuity of f (see (2.1)) and from the fact that for any $m \times m$ matrix M the norm $||M \otimes I^{(n)}||$ is independent of n (which can be proved e.g. by using Lemma 2.2 in [7]). \square

If $\mathcal{M}_2 \neq \emptyset$ the function ϕ defined by (3.15) depends through ψ on the (local) Lipschitz constant of f. If $\alpha \ge 0$ this Lipschitz constant can be arbitrarily large. In this case the upper bound on $\|\tilde{z} - z\|$ provided by the theorem thus only holds for the particular function f under consideration, and not uniformly for all f satisfying (2.1).

We note that when $\mathcal{M}_2 = \emptyset$ and $\alpha = 0$, the content of Theorem 3.3 is similar to the (so-called BSI-stability) results formulated in [13, Thm. 4.1, Cor. 4.1], [12, Thm. 5.3.7].

3.4. External stability. We deal with the effect of the internal perturbation r on the difference $\tilde{u}_k - u_k$ where u_k , \tilde{u}_k satisfy (3.8), (3.9). The following theorem provides a condition under which a bound for $|\tilde{u}_k - u_k|$ in terms of ||r|| holds uniformly for all f satisfying (2.1). This condition can be fulfilled in cases where no analogous uniform bound holds for $||\tilde{z} - z||$.

Theorem 3.4. Assume (2.1), (2.2), (2.3). Suppose there exist real d_j (for $j \in \mathcal{M}_2$) such that

$$b_i = \sum_{j \in \mathcal{M}_2} d_j a_{ji}$$
 (for all $i \in \mathcal{M}_2$).

Then there is a constant γ only depending on A, b, $h^{-1}\alpha$, $h\beta$ (and not on u_{k-1} , z, f or the dimension n) such that

$$|\tilde{u}_k - u_k| \leq \gamma ||r||$$

whenever u_k , \tilde{u}_k , r satisfy (3.8), (3.9).

Proof. We define

$$d_i = b_i - \sum_{j \in \mathcal{M}_2} d_j a_{ji}$$
 (for all $i \in \mathcal{M}_1$),

and

$$d = (d_1, d_2, \cdots, d_m)^T, \qquad \mathbf{d} = d \otimes I^{(n)}.$$

One easily verifies that, with these definitions,

$$\mathbf{b}^T = \mathbf{d}^T I_1 + \mathbf{d}^T \mathbf{A}_2.$$

From (3.8), (3.9) it follows that

$$\tilde{u}_k - u_k = [\mathbf{d}^T I_1 + \mathbf{d}^T \mathbf{A}_2][(F_1 \tilde{z} - F_1 z) + I_2(\tilde{z} - z)].$$

Defining x, \tilde{x} , y, \tilde{y} by (3.10) we have

$$F_1\tilde{z} - F_1z = I_1(\tilde{x} - x), \qquad A_2[(F_1\tilde{z} - F_1z) + I_2(\tilde{z} - z)] = A_2(\tilde{x} - x) = I_2(\tilde{y} - y).$$

Consequently

$$\tilde{\mathbf{u}}_{\nu} - \mathbf{u}_{\nu} = \mathbf{d}^{T} [I_{1}(\tilde{\mathbf{x}} - \mathbf{x}) + I_{2}(\tilde{\mathbf{v}} - \mathbf{v})].$$

An application of Lemma 3.2 completes the proof. \Box

In order to formulate some interesting corollaries to the above theorem, we define for any index set $\mathcal{N} \subset \{1, 2, \dots, m\}$ the $m \times m$ matrix $A(\mathcal{N})$ by

$$A(\mathcal{N}) = (c_{ij}), \quad c_{ij} = a_{ij} \text{ (if } i \in \mathcal{N}, j \in \mathcal{N}), \quad c_{ij} = \delta_{ij} \text{ (otherwise)},$$

where δ_{ii} denotes the Kronecker delta.

COROLLARY 3.5. Suppose (2.2) holds with

$$\delta_i \ge 0$$
, $\sigma_i \ge 0$, $\tau_i \ge 0$, $\sigma_i + \tau_i > 0$ (for $1 \le i \le m$).

Let \mathcal{M}_1 , \mathcal{M}_2 be disjoint, $\mathcal{M}_1 \cup \mathcal{M}_2 = \{1, 2, \dots, m\}$, with

$$\{i \mid \sigma_i = 0\} \subset \mathcal{M}_2 \subset \{i \mid \tau_i > 0\},$$

and Rank $[A(\mathcal{M}_2)^T, b] = \text{Rank}[A(\mathcal{M}_2)^T]$. Then there is a constant γ (only depending on A, b) such that

$$|\tilde{u}_{\nu}-u_{\nu}| \leq \gamma ||r||$$

whenever u_k , \tilde{u}_k , r satisfy (3.8), (3.9) and the continuous $f: \mathbb{R} \times \mathbb{K}^n \to \mathbb{K}^n$ fulfills (1.2).

This corollary completes some results on external stability for $\mathcal{M}_1 = \{1, 2, \dots, m\}$ derived under assumptions (1.4), (1.2) in [10, Cor. 4.3].

COROLLARY 3.6. Let h>0 and $\alpha, \beta, \kappa, \lambda \in \mathbb{R}$ be given numbers, $D=\operatorname{diag}(\delta_1, \delta_2, \cdots, \delta_m)$, and let $\mathcal{M}_1, \mathcal{M}_2$ be disjoint index sets with $\mathcal{M}_1 \cup \mathcal{M}_2 = \{1, 2, \cdots, m\}$. Assume the following four conditions hold.

- (i) $DA + A^{T}D \kappa D \lambda A^{T}DA$ is positive semidefinite;
- (ii) $\delta_i > 0 \ (1 \le i \le m), \ 2\alpha h^{-1} \le \kappa, \ 2\beta h \le \lambda, \ 2\alpha h^{-1} + 2\beta h < \kappa + \lambda;$
- (iii) Rank $[A(\mathcal{M}_2)^T, b] = \text{Rank } [A(\mathcal{M}_2)^T];$
- (iv) if $\alpha = \kappa = 0$ then either $\mathcal{M}_1 = \emptyset$ or A is regular.

Then there is a constant γ (only depending on A, b, αh^{-1} and βh) such that

$$|\tilde{u}_k - u_k| \leq \gamma ||r||$$

whenever \tilde{u}_k , u_k , r satisfy (3.8), (3.9) and f fulfills (2.1).

Proof. By applying Lemma 2.2 to the function hf, the proof follows from Theorem 3.4 for the case $[2\alpha h^{-1} \le \kappa, 2\beta h < \lambda, \alpha \ne 0]$.

If $[\alpha = \kappa = 0, 2\beta h < \lambda, M_1 = \emptyset]$, Theorem 3.4 may be applied directly.

In case $[\alpha = \kappa = 0, 2\beta h < \lambda, A \text{ regular}]$ we take $S = \kappa_1 D$, $T = \lambda_1 D$ in (2.2) with $\lambda_1 \in (2\beta h, \lambda)$, $\kappa_1 > \kappa$ and $\kappa_1 - \kappa$ sufficiently small. The assumptions of Theorem 3.4 are then fulfilled.

Similarly, if $[2\alpha h^{-1} < \kappa, 2\beta h \le \lambda]$ we choose $S = \kappa_1 D$, $T = \lambda_1 D$ with $\kappa_1 \in (2\alpha h^{-1}, \kappa), \lambda_1 > \lambda$ and $\lambda_1 - \lambda$ sufficiently small. \square

Let the Runge-Kutta method (1.3) be algebraically stable. Consider along with (3.6), (3.7), the perturbed relations

(3.16)
$$\tilde{u}_k = u_{k-1} + \mathbf{b}^T F \tilde{\mathbf{y}}, \qquad \tilde{\mathbf{y}} - \mathbf{A} F \tilde{\mathbf{y}} = \mathbf{p},$$

(3.17)
$$\tilde{u}_k = u_{k-1} + \mathbf{b}^T \tilde{x}, \qquad \tilde{x} - F \mathbf{A} \tilde{x} = q,$$

respectively. For given h>0, $\alpha \le 0$, $\beta \le 0$, $\alpha+\beta<0$, Corollary 3.6 (with $\kappa=\lambda=0$) proves the existence of a constant γ such that

$$(3.7), (3.17) \Rightarrow |\tilde{u}_k - u_k| \leq \gamma ||q||$$

uniformly for all f satisfying (2.1) (note that $\operatorname{Rank}[A^T, b] = \operatorname{Rank}[A^T]$ since $x^T(A^TBx) \ge \frac{1}{2}(x^Tb)^2$ (for all $x \in \mathbb{R}^m$)). Under the same assumptions the corollary also proves the existence of a γ such that

$$(3.6), (3.16) \Rightarrow |\tilde{u}_k - u_k| \leq \gamma ||p||$$

uniformly for all f satisfying (2.1), provided we assume additionally that

$$\alpha < 0$$
, or A is regular.

We note that when $\alpha = 0$ this stability result for (3.16) also follows from [12, Thm. 5.3.7]. On the other hand, Corollary 3.6 implies the general bound for $|\tilde{u}_k - u_k|$ in terms of ||p|| (cf. (3.6), (3.16)) that also follows from [12, Thm. 5.3.7].

3.5. Examples.

Example 3.7. Consider the 3-stage Labotto IIIC method (cf. Example 2.5) and let f satisfy (1.2). Choosing $\mathcal{M}_1 = \{2\}$, $\mathcal{M}_2 = \{1, 3\}$, it follows from Corollary 3.5 that

$$|\tilde{u}_k - u_k| \leq \gamma \cdot ||r||$$

whenever (3.8), (3.9) hold. Here γ is independent of h > 0 and f. The formulation (3.8) of the Runge-Kutta step for which this stability result is valid, reads in full

(3.18a)
$$u_k = u_{k-1} + \frac{1}{6}(z_1 + 4f_2(z_2) + z_3),$$

$$z_1 = f_1(\frac{1}{6}(z_1 - 2f_2(z_2) + z_3)),$$

$$z_2 = \frac{1}{12}(2z_1 + 5f_2(z_2) - z_3),$$

$$z_3 = f_3(\frac{1}{6}(z_1 + 4f_2(z_2) + z_3))$$

with $f_i(\xi) = hf(t_{k-1} + c_i h, u_{k-1} + \xi), c_0 = 0, c_1 = \frac{1}{2}, c_2 = 1.$

For $\|\tilde{z} - z\|$ there is no analogous upper bound valid in terms of $\|r\|$. If we define \tilde{u}_k, \tilde{y} by (3.16), it can be proved that not only

$$\sup \{ \|\tilde{y} - y\| : p \in \mathbb{K}^{3n}, \|p\| \le 1, f \text{ satisfies } (1.2) \} = \infty$$

(cf. [10, ex. 4.4], [12, ex. 5.9.2]), but also

$$\sup \{ |\tilde{u}_k - u_k| : p \in \mathbb{K}^{3n}, ||p|| \le 1, f \text{ satisfies } (1.2) \} = \infty.$$

In practical applications the use of (3.18) thus seems to have an advantage over the use of (1.3). A small residual vector in the process (3.18) has generally a substantially smaller effect on the approximation to $U(t_k)$ than in the process (1.3).

Example 3.8. Consider an arbitrary method satisfying condition (1.4) (e.g. Gauss, Radau IA or IIA—see [13]).

Applying Corollary 3.6 it can be seen that, for any disjoint \mathcal{M}_1 , \mathcal{M}_2 with $\mathcal{M}_1 \cup \mathcal{M}_2 = \{1, 2, \dots, m\}$, there exist $\kappa_0 > 0$, $\lambda_0 > 0$, $\gamma > 0$ such that

$$(3.8), (3.9) \Rightarrow |\tilde{u}_k - u_k| \leq \gamma ||r||$$

uniformly for all h > 0 and f satisfying (2.1) with

$$\alpha h^{-1} \leq \kappa_0, \quad \beta h \leq \lambda_0.$$

In particular we thus have

$$(3.6), (3.16) \Rightarrow |\tilde{u}_k - u_k| \leq \gamma ||p||$$
 and $(3.7), (3.17) \Rightarrow |\tilde{u}_k - u_k| \leq \gamma ||q||$

uniformly for h > 0 and f as above. This completes a so-called BS-stability result on (3.6), (3.16) with $\alpha = 0$ given in [13, Thm. 4.1, Cor. 4.1], [12, Thm. 7.4.1].

It thus follows that a small residual, e.g. in the numerical solution of either (1.3b) or (1.5b), only slightly disturbs the corresponding u_k computed via (1.3a) or (1.5a), respectively (uniformly for $\alpha h^{-1} \le \kappa_0$, $\beta h \le \lambda_0$).

Example 3.9. We finally give a counterexample showing that assumption (iv) in Corollary 3.6 cannot be omitted.

Consider Euler's method (m = 1, A = 0, b = 1). The conditions (i), (ii), (iii) of the corollary are fulfilled with

$$\delta_1 = 1$$
, $\kappa = 0$, $\lambda = 1$, $\alpha = 0$, $\beta = 0$, $h = 1$, $\mathcal{M}_2 = \emptyset$.

Applying (3.6), (3.16) with $u_{k-1} = 0$, $f(t, \xi) = \mu \xi$, $\mu < 0$, we have

$$\tilde{u}_k - u_k = \mu p.$$

Letting $\mu \to -\infty$ we see that the conclusion of Corollary 3.6 is not valid.

4. The proof of Theorem 2.1. Theorem 2.1 is easily proved by using Lemma 4.1 and by a combination of Theorem 3.3 with the subsequent Lemma 4.2.

LEMMA 4.1. Each of the following systems (4.1)–(4.4) has a unique solution iff any of the other systems has a unique solution.

$$(4.1) y - \mathbf{A}Fy = 0,$$

$$(4.2) x - FAx = 0,$$

$$(4.3) Hz = 0,$$

(4.4)
$$y - Ax = 0, \quad x - Fy = 0.$$

Proof. Apply Lemma 3.1. □

LEMMA 4.2. Let E be a finite dimensional vector space over \mathbb{K} with norm $\|\cdot\|$, and let $G: E \to E$ be a given continuous function. Assume $\phi: E \times [0, \infty) \to [0, \infty)$ has the properties

- (a) $\phi(z;\cdot)$ is isotone on $[0,\infty)$ (for all $z \in E$),
- (b) $\phi(z; 0) = 0$ (for all $z \in E$),
- (c) $\|\tilde{z}-z\| \leq \phi(z; \|G\tilde{z}-Gz\|)$ (for all $z, \tilde{z} \in E$).

Then there is a unique $z^* \in E$ with $Gz^* = 0$.

Proof. G is a continuous one-to-one mapping defined on E. The domain-invariance theorem (cf. [18]) thus implies that G(E) is open.

Property (c) implies that $||Gz|| \to \infty$ (when $||z|| \to \infty$). Therefore a bounded sequence $z_1, z_2, z_3 \cdots$ exists with

$$\lim_{k\to\infty} \|Gz_k\| = r, \qquad r = \inf\{\|Gz\|: z\in E\}.$$

Consequently there is a subsequence $\{y_k\}$ of $\{z_k\}$ with

$$\lim_{k \to \infty} y_k = z^*, \quad \lim_{k \to \infty} Gy_k = Gz^*, \quad ||Gz^*|| = r$$

for some $z^* \in E$.

Since G(E) is open, we have r=0. \square

We note that theorems with much resemblance to the above lemma can be found in the literature (see e.g. [16, Thm. 13.5], [19, Thm. 5.3.8]).

REFERENCES

- [1] K. BURRAGE AND J. BUTCHER, Stability criteria for implicit Runge-Kutta methods, this Journal, 16 (1979) pp. 46-57.
- [2] _____, Nonlinear stability for a general class of differential equation methods, BIT, 20 (1980), pp. 185-203.
- [3] G. J. COOPER, A generalization of algebraic stability for Runge-Kutta methods, IMA J. Numer. Anal., 4 (1984), pp. 427-440.
- [4] M. CROUZEIX, Sur la B-stabilité des méthodes de Runge-Kutta, Numer. Math., 32 (1979), pp. 75-82.
- [5] M. CROUZEIX, W. H. HUNDSDORFER AND M. N. SPIJKER, On the existence of solutions to the algebraic equations in implicit Runge-Kutta methods, BIT, 23 (1983), pp. 84-91.
- [6] M. CROUZEIX AND P. A. RAVIART, Unpublished lecture notes, Université de Rennes, 1980.
- [7] G. DAHLQUIST, Error analysis for a class of methods for stiff nonlinear initial value problems, Lecture Notes in Mathematics, 506 (1976), Springer-Verlag, Berlin, pp. 60-72.
- [8] —, G-stability is equivalent to A-stability, BIT, 18 (1978), pp. 384-401.
- [9] G. DAHLQUIST AND R. JELTSCH, Generalized disks of contractivity for explicit and implicit Runge-Kutta methods, Report TRITA-NA-7906, Dept. Comp. Sci., Roy. Inst. Techn., Stockholm, 1979.
- [10] K. DEKKER, Error bounds for the solution of the algebraic equations in Runge-Kutta methods, BIT, 24 (1984), pp. 347-356.
- [11] K. DEKKER AND E. HAIRER, A necessary condition for BSI-stability, BIT, 25 (1985), pp. 285-288.
- [12] K. DEKKER AND J. G. VERWER, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, North-Holland, Amsterdam, 1984.
- [13] R. FRANK, J. SCHNEID AND C. W. UEBERHUBER, Stability properties of implicit Runge-Kutta methods, this Journal, 22 (1985), pp. 497-514.
- [14] ——, Order results for implicit Runge-Kutta methods applied to stiff systems, this Journal, 22 (1985), pp. 515-534.
- [15] W. H. HUNDSDORFER, The numerical solution of nonlinear stiff initial value problems, Ph.D. thesis, Univ. Leiden; CWI-tract, Amsterdam, 1984.
- [16] TH. MEIS AND U. MARCOWITZ, Numerical Solution of Partial Differential Equations, Springer-Verlag, New York, 1981.
- [17] O. NEVANLINNA, On the numerical integration of nonlinear initial value problems by linear multistep methods, BIT, 17 (1977), pp. 58-71.
- [18] J. T. SCHWARTZ, Nonlinear Functional Analysis, Gordon and Breach, New York, 1969.
- [19] J. M. ORTEGA AND W. C. RHEINBOLDT, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.